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Abstract. Using the perturbation expansion in the rebonding interaction near the surface molecule limit,
the new diagram technique for the calculation of the chemisorption energy in the Anderson model is
proposed. The new expression for the chemisorption energy in the ring diagram approximation is presented.
The approximate expression for the contribution of the non- ring diagrams is suggested. The chemisorption
energies are calculated and compared with the available exact results and others in the literature. A simple
explanation of observable trends in hydrogen chemisorption energies along the transition metal series is
given based on the rebonding surface molecule picture.

PACS. 71.10.-w Theories and models of many electron systems – 73.20.Hb Impurity and defect levels;
energy states of adsorbed species – 82.65.My Chemisorption

1 Introduction

Electron-electron correlations play an important role in
adsorption phenomena on transition metals [1]. In par-
ticular, they give the contribution to the chemisorption
energy and determine essentially the value of the excess
adatom charge. In the last decade the first-principle meth-
ods of calculations of the hydrogen chemisorption energy
have been considerably advanced (see e.g. the recent pa-
pers [2–6]). These methods use not only the local version
of the density functional theory but also take into account
the non-local exchange-correlation interactions which per-
mits chemical accuracy to be achieved. However, the per-
formed calculations are complicated and time consuming
so that every method is applied to the case of hydrogen
chemisorption on a certain transition metal. Therefore, it
is difficult to reveal the effect of different physical fac-
tors (e.g. electron-electron correlations, the parameters
of the electronic structure of a metal) on the obtained
numbers. Thus, to interpret the results of the ab initio
calculations and to study the effect of different physical
factors on the chemisorption energy and the excess adatom
charge it is necessary to consider the more simple models
of chemisorption.

This problem was already pointed out in reference [7]
where a simple model has been used for the understanding
of the results of the first density-functional calculations for
hydrogen and lithium chemisorption on free-electron-like
substrates. A number of simple calculation schemes has

a e-mail: theor@serv1.phyche.ac.ru

also been elaborated for the case of hydrogen chemisorp-
tion on transition metals. Among these are the tight-
binding method [8], the embedded cluster method [9], the
tight-binding method including the electron correlation
contribution in the second order in the Coulomb interac-
tion (see e.g. the review paper [10] and references therein)
and the effective medium approach [11].

The present paper addresses the same problem and
provides a simple explanation of trends in hydrogen
chemisorption energies along the transition metal series
basing on the rebonded surface molecule point of view
within the Anderson-Newns model [12,13] of chemisorp-
tion. The Anderson-Newns model does contain many-
body effects in an important part – the adatom – and
describes the chemical bond between a metal with a con-
tinuum of itinerant electron states and an adatom with a
discrete localized level.

The Anderson Hamiltonian has the form

H =
∑
k,σ

εknkσ +
∑
σ

(
εanaσ +

1
2
Unaσna−σ

)
+
∑
k,σ

(
Vakc

+
aσckσ + h.c.

)
(1)

where εk and nkσ = c+kσckσ are the electronic energies
of the metal quasi-particle states /k〉 and corresponding
occupation number operators, εa and naσ = c+aσcaσ are
the energy and occupation number operator of the elec-
tronic orbital /a〉 of an adatom, and σ is the spin projec-
tion. The first term in the right-hand side of equation (1)
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describes the metal in the one-particle approximation.
The second and the third terms represent the Hamilto-
nian of an adatom having the single non-degenerate elec-
tronic orbital which may be occupied by two electrons
with the opposite projection of spins. In particular, the
third term takes into account the Coulomb repulsion be-
tween these electrons where U is the Coulomb repulsion
energy. The last two terms describe the hybridization of
the electronic metal states with the electronic orbital of
an adatom with Vak as coupling constants. In the present
paper the energies of single-particle states are measured
relative to the center of the substrate energy band, the
energy unit is given by B/2 where B is the bandwidth.
V = (Σk|Vak|2)1/2 is the hybridization parameter.

The Anderson-Newns model has three exactly solvable
limits when one of the parameters U , V or B is equal to
zero [14]. The Anderson model has been solved exactly
by the Bethe-Ansatz method in the infinite bandwidth
limit, i.e. B � U , V , εa [15]. The Anderson model can
also be solved exactly in the limiting case when the sub-
strate energy band has only one electron (or hole), and the
problem reduces to a two-particle problem [16]. In the
general case one needs an approximate treatment of
the Anderson-Newns model. The traditional perturbation
methods for the Anderson model use the expansion in the
hybridization or the Coulomb repulsion [1,10]. However,
for the hydrogen chemisorption problem the hopping pa-
rameter V , the Coulomb repulsion U and the bandwidth
B have the same order of magnitude so that expansions in
the hybridization and the Coulomb repulsion as well as a
number of decoupling methods are not fully justified pro-
cedures. It should be noted that the exact Bethe-Ansatz
results for the infinite bandwidth limit can be expanded
in power series in a U [17]. At the same time, it is not
clear in advance why the second order term in U used in
reference [10] will give reasonable results for the correla-
tion energies at finite bandwidth. As shown below, it is
the case for the hydrogen chemisorption on the transition
metals.

The rebonded surface complex point of view is known
to give a reasonable account of the bonding curve near
the chemisorption minimum [18,19]. Therefore, in order
to study many body effects in adsorption phenomena on
transition metals, we have proposed in reference [20,21]
the new diagram technique for the Anderson model which
is based on the perturbation expansion in the rebonding
interaction near the surface molecule (SM) limit. From
equation (1) it follows that the adatom level couples di-
rectly only with the normalized state

|b〉 = V −1
∑
k

V ∗ak|k〉 (2)

introduced in [22]. Therefore, instead of the basis set |k〉
we consider the equivalent basis set constructed of the
state |b〉 and normalized states |p〉 which are orthogonal
to |b〉 and each other. The states |p〉 are also chosen to be
the eigenstates of the remaining metal [21]. Here the term
“the remaining metal” designates the metal from which
the state |b〉 is detached. Then the Anderson Hamilto-

nian (1) can be rewritten in the form [20,21,23,24]

H = Hsm +
∑
p,σ

λpc
+
pσcpσ +∆H. (3)

Here Hsm is the Hamiltonian of the a− b SM

Hsm =
∑
σ

{
εanaσ + εbnbσ

+
1
2
Unaσna−σ + V (c+aσcbσ + h.c.)

}
, (4)

εb = V −2
∑
k εk|Vak|2 is the energy of the state |b〉. The

second term in the right-hand side of equation (3) is the
Hamiltonian of the remaining metal, c+pσ, cpσ are the cre-
ation and annihilation operators of an electron in the state
|p〉 of the remaining metal with the energy λp. ∆H is the
rebonding interaction:

∆H =
∑
p,σ

(µp
2
c+pσcbσ + h.c.

)
(5)

which describes the rebonding of SM to the remaining
metal. The energies λp and µp are given by equations (11)
of reference [21].

We have presented in [20,21] the diagrammatic rep-
resentation of the adatom Green function and obtained
the expression for the self-energy in the second order in
the rebonding interaction. The chemisorption energy can
be calculated by the substitution of the adatom Green
function into the equation of reference [25] for the binding
energy. The chemisorption energy can also be calculated
directly using the perturbation expansion for the thermo-
dynamic potential (see e.g. Ref. [26]) in the limit when
the temperature T goes to zero. This method seems to
be more appropriate because the perturbation expansion
for the thermodynamic potential is organized so perfectly
that the summation of the infinite series of the simple ring
diagrams gives rather accurate results for the chemisorp-
tion energy.

In Section 2 of the present paper we propose the new
diagram technique for the calculation of the chemisorption
energy of a one-level atom on a transition metal. This tech-
nique is analogous to that of reference [21] for the adatom
Green function and uses the perturbation expansion of the
thermodynamic potential in the rebonding interaction. It
should be noted that the same perturbation expansion can
be also applied to the magnetic impurity problem in the
case when the impurity atom interacts strongly with the
narrow band alloy. From the very beginning we consider
the limit T → 0. It can be shown that in this limit the
change ∆Ω of the thermodynamic potential due to the re-
bonding interaction ∆H of SM with the remaining metal
goes to the corresponding change∆E of the chemisorption
energy.

We write the total chemisorption energy E of a one-
level atom on a transition metal in the form [27]

E = ∆E20 +Eb +∆E (6)
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where ∆E20 is the bonding energy of the doubly-occupied
SM in the singlet state, Eb is the energy of the separation
of the singly-occupied state |b〉 from the metal, and ∆E is
the exact energy of the rebonding of SM to the remaining
metal. Equation (1) with ∆E = ∆E(2), where∆E(2) is the
energy of the interaction of SM with the remaining metal
up to the second order in the rebonding interaction, has
already been used in references [18,19,23,24] for different
models of the chemisorption process. For the asymmetric
Anderson model and the arbitrary electronic density of
states of a metal the energies ∆E20 and Eb have been
defined and studied in [28]. The expression for Eb for the
general case is obtained below.

Using the perturbation expansion in the rebonding
interaction, we have suggested in [27] the ring diagram
approximation (RDA) for ∆E which is exact in a num-
ber of important limiting cases, simple and yet accurate-
enough for the calculations of the energies of hydrogen
chemisorption on transition metals. On the basis of this
approximation the role of the electron correlation effects in
adsorption phenomena on transition metals has been stud-
ied [29]. In Section 3 the new simple expression for the
chemisorption energy in RDA is presented. This expres-
sion elucidates the physical meaning of RDA and permits
the simple calculations of the chemisorption energies and
the excess adatom charge.

Thus, the diagram technique suggested in the present
paper provides the foundation of the simple and transpar-
ent physical picture of hydrogen chemisorption on transi-
tion metals. This picture is given by expression (6) and
consists in the formation of SM and its subsequent inter-
action with the remaining metal.

The non-ring diagrams include the vertex functions Γk
introduced in references [20,21]. We present in Section 3
the expression for the contribution ∆E(4)

nr of the non-ring
diagram of the fourth order in the rebonding interaction
for the symmetric case. The approximate expression for
the contribution δEnr of the non-ring diagrams, which in-
cludes the terms beyond the fourth order, is suggested in
Section 4. This expression is based on the summation of
the infinite class of the non-ring diagrams which have as a
skeleton the non-ring diagram of the fourth order. Using
the considered approximations, the chemisorption ener-
gies are calculated for different models of substrate and
compared with the available exact results and others in
the literature. It is shown that RDA is very accurate for
V > U/4. Taking into account the contribution δEnr, one
can calculate properly the chemisorption energy for the
lower values of V .

Finally, in Section 5, we present the results of cal-
culations of hydrogen chemisorption energies on the 5d-
transition metal surfaces at the equilibrium position of an
adatom. It is shown that the obtained trends in hydrogen
chemisorption energy are in agreement with experiment.
The simple explanation of these trends is given in terms
of the energies ∆E20, Eb and ∆E.

Fig. 1. Diagrammatic representation for the energy of the re-
bonding interaction ∆E.

2 The diagram technique
for the chemisorption energy

The interaction energy of SM with the remaining metal is
given by

∆E = −limT→0
1
β

∞∑
n=1

(−1)n

n!

×
∫ β

0

dτ1...
∫ β

0

dτn〈T∆H(τ1)...∆H(τn)〉c (7)

where β = (kT )−1, ∆H(τ) = exp(τH ′)∆H exp(−τH ′),
H ′ = H−∆H−µN , H is the Anderson Hamiltonian, N is
the total number of electrons in the system, µ is the chem-
ical potential which in the case of a metal having macro-
scopic volume goes to the Fermi energy εF when T → 0.

∆E is equal to the sum of the contributions of the con-
nected diagrams which are constructed as for the adatom
Green function [21]. The diagrams for ∆E which do not
include the vertex functions Γk, we have called the ring
diagrams [27]. Let ∆E

(n)
r and ∆E

(n)
nr be the ring and

non-ring diagram contribution to the chemisorption en-
ergy in the n order in the rebonding interaction, so that
∆E(n) = ∆E

(n)
r + ∆E

(n)
nr for n > 2 because ∆E(2) =

∆E
(2)
r . These diagrams up to the fourth order in the re-

bonding interaction are shown in Figure 1. In Figure 1 we
also present the ring diagram of the sixth order. Heavy
lines depict the temperature Green functions Gijσ(z) of
the non-perturbed SM in the limit T → 0. Here i, j = a, b,
z = εF+iω and the Fourier transform of Gijσ(τ) is defined
by equation

Gijσ(τ) =
1
β

∑
n

Gijσ(µ+ iωn) exp (−iωnτ),

ωn = (2n+ 1)π/β. (8)

The ends of heavy lines are marked by the indices i and j.
A dashed line corresponds to the function χ(z) [21]. This
function describes the effective contribution of electrons
propagating in states |p〉 to the interaction of SM with
the remaining metal. The lined square depicts the vertex
function Γ2;σσ′(z, z′, z′) which includes the lines of the
electron-electron interaction and is given by equation (20)
of [21]. The summation over the spin indices and integra-
tion over the independent energies ω, ω′ is performed.



192 The European Physical Journal B

Functions Gab(z), Gba(z) and Gbb(z) are expressed
through Gaaσ(z) [21]. For the Green functions Gaaσ(z)
and Gabσ(z) in the general asymmetric case we have

Gaaσ(z) = [z − εa −Σ0(z)− πV 2Λ0(z)]−1,

Gabσ(z) = Gabσ(z) = V Gaaσ(z)/(z − εb), (9)

where Λ0(z) = [π(z − εb)]−1 and Σ0(z) is the self-energy:

Σ0(z) = Una0/2 +M0(z);

M0(z) =
Dz + c

z2 − (t− U∆na0/2)z −B · (10)

Here t = εa +U/2, na0 is the average number of electrons
on an adatom in the SM limit and ∆na0 = na0 − 1 is the
excess adatom charge. Using the results of reference [30]
for M0(z), we obtain that

D = U2(1−∆n2
a0)/4;

C = ∆E20U [∆na0(∆E20 − U/2)− t]; (11)

B = 2∆E20(∆E20 − U/2) + V 2; (12)

∆na0 =
2t∆E20

3∆E2
20 − 2U∆E20 − t2 − 4V 2 + U2/4

; (13)

∆E20 = −2
(
−p

3

)1/2

sin
[
π + arctg(0.5q/D1/2)

3

]
+ U/3;

(14)

where p = −(t2 +4V 2 +U2/12), q = U(p+6V 2 +U2/9)/3,
D = −(q/2)2 − (p/3)3 and D > 0 for V 6= 0.

Below we also use the next form of the Green function
Gbbσ(z) [27]:

Gbb(z) =
∑
α

(
κ1α

z − d1α
+

κ3α

z + d3α

)
(15)

where κ1α = |〈20|c+b−σ|1ασ〉|2, κ3α = |〈20|cbσ|3ασ〉|2,
diα = ∆E20 − ∆Eiα and diα < 0 for all values of εa,
∆E1α = E1α− εa, ∆E3α = E3α− 2εb− εa, |iασ〉 and Eiα
are the state and the energy of SM having i = 1, 3 elec-
trons, α = ± and the index “–” labels the state |i〉 with
the lowest energy.

Let ∆(ε) be the electronic density of states of the sub-
strate projected into the orbital |b〉 and Λ(ε) be its Hilbert
transform. Then from references [20,21]

χ(z) = z − εb − [πΛ(z)]−1 (16)

where Λ(z) is the analytic continuation of Λ(ε) from the
interval (1,∞) of the real axis into the complex plane with
the cut [–1,1].

3 The ring diagram approximation

From Figure 1 it follows that the factor at the given ring
diagram of the nth order in the rebonding interaction is
equal to 1/k, where k = n/2 and coincides with the order

in χ(z). Therefore, the series consisting of the contribu-
tions of the ring diagrams forms the expression for the
logarithmic function. The sum ∆Er of this series we call
the interaction energy of SM with the remaining metal in
RDA [27]:

∆Er =
i
π

∫
ln[1− χ(z)Gbbσ(z)]dz (17)

where the integration is performed over the line l: Re z =
εF in the complex plane with the cut [-1,1] and Im(ln) is
taken from −π to π. For, e.g., the semi-elliptic density of
states ∆(ε) we have χ(z) = [z − (z2 − 1)1/2]/2 and in the
symmetric case

∆Er = − 2
π

×
∫ ∞

0

dω ln
{

1 +
ω[(ω2 + 1)1/2 − ω](ω2 + 4x2 + 9V 2)

2[ω4 + 2(2x2 + 5V 2)ω2 + 9V 4]

}
(18)

where x = U/4. The energy ∆Er (18) as well as the en-
ergy ∆Er (17) for εF = 0 and arbitrary εa are the analytic
functions of V in the vicinity of the real axis for V > 0.
Thus, although the perturbation expansion in the rebond-
ing interaction is formally valid for V > 1, the functions
∆Er(V ) (17-18) can be analytically continued to the re-
gion of small V and give the exact energy ∆E in the
limit U → 0 because in this limit Γk ≡ 0. As follows
from equation (15), in the asymmetric case for εF 6= 0
expression (17) for ∆Er is valid for d3− < −(εF− εb) and
d1− < εF − εb.

The chemisorption energy Er in RDA is given by [27]

Er = ∆E20 +Eb +∆Er. (19)

For the symmetric case the energy Eb has been obtained
in reference [24]. In the general case the energy of the
separation of the singly-occupied state |b〉 from the metal
is defined as

Eb = εb +
∑
p,σ

f(λp)λp −
∑
k,σ

f(εk)εk (20)

where f(x) is the Fermi function. The energies λp are
the zeroes of the function Λ̃(z) = (πV 2)−1

∑
k |Vak|2/(z−

εk) [21] and the energies εk are its poles. In the macro-
scopic limit the function Λ̃(z) goes to Λ(z). Let Nk and
Np be the total numbers of electrons in the metal and in
the remaining metal, respectively. Since Nk = Np + 1, we
have

Eb = εb +
1

2πi

∮
λ

z
d ln Λ̃(z)

dz
dz − εF (21)

where the contour λ encloses all the points λp and εk with
the exception of εF, and the transition from the summa-
tion over p and k to the integration is analogous to that
used in reference [13] for the calculation of the chemisorp-
tion energy. Finally, in the macroscopic limit one obtains

Eb(εF) = − 2
π

∫ εF

−1

arctg
[
∆(ε)
Λ(ε)

]
dε+ εb − εF. (22)
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Here arctg is taken from −π to 0 so that for εF = ±1
the energy Eb = 1, as follows directly from its physical
meaning, and for the symmetric function ∆(ε) one has
Eb(εF) = Eb(−εF). The dependence of the energy Eb(εF)
on the density of states ∆(ε) is studied in the Appendix.

Let M1 < 0 and M2 > 0 be the poles of M0(z) (10). If
in equation (17) we go from the integration over the line
λ to the integration over the banks of the cut [–1,1] and
use equation (22) for Eb, we obtain that for |M1|,M2 > 1

Er = 2(ε12 − εb − d1+) + 2(εl1 + 1) + εF

− εa − {∆E20 − 2∆E1− − εa + εb}+
2
π

×
∫ εF

−1

arctg
[

πV 2∆(ε)
ε− εa − Una0/2−M0(ε)− πV 2Λ(ε)

]
dε.

(23)

Here arctg is taken from −π to 0, εl1 and εl2 are the roots
of the function ε− εa−Una0/2−M0(ε)−πV 2Λ(ε) in the
region ε < −1. This function coincides with the denom-
inator of the adatom Green function L̃aaσ(z) [20] which
corresponds to the approximation

∑
(z) =

∑
0(z). Thus,

the energies εl1 and εl2, where εl2 ≤ M1 < εl1 ≤ −1,
are the energies of the localized states in the case when∑

(z) =
∑

0(z). If the localized state εl1 is absent, the
term (εl1 + 1) in equation (23) should be omitted. Since
|M1|, M2 have the order of 3 V , the condition V > B/6
always takes place for the hydrogen chemisorption on tran-
sition metals. However, it may happen for large values of
εa that M1 > −1. The identity E(εa, εF) = E(−(εa +U),
−εF) can be used in this case.

RDA is exact in the second order in the rebonding
interaction because ∆E(2) = ∆E

(2)
r . For U = 0 we have

M0(ε) = 0. In this limit equation (23) is valid for arbitrary
values of εa, εF, and coincides with the exact chemisorp-
tion energy of reference [13] for the non-interacting elec-
trons because the first term in (23) and the term in figure
brackets equal zero. Thus, RDA in the form (23) is also
valid in the limit U = 0 for arbitrary εF.

It should be noted that RDA is not exact in the second
order in U because the vertex functions Γ2, Γ3 and Γ4

have an order of U2 when U → 0. However, as discussed
below, the omitted terms have an order of (U/4V )2, the
high order in the rebonding interaction, and are therefore
small for parameters imitating hydrogen chemisorption on
transition metals.

Equation (23) also presents in the explicit form the
physical meaning of RDA as the approximation of the
dressed non-interacting quasi-particles. For U 6= 0 the first
term on the right-hand side of equation (23) has the form
2εl2W2 and is equal to the contribution of the localized
state l2 with the weight W2 to the chemisorption energy
where W2 = (εl2− εb−d1+)/εl2. For the localized state l1
the weight W1 = 1. The term in figure brackets is equal to
E20−2E1− where E20 is the energy of the ground state of
the doubly-occupied SM. Since the difference E20 − 2E1−
coincides with the contribution of the Coulomb interaction
to E20, the term in figure brackets eliminates the excess

Coulomb interaction energy entering the term 2εl1. In the
SM limit εl2 = d1+ + εb, εl1 = d1− + εb and Er = ∆E20.
The last term in equation (23) gives the contribution of
quasi-particles having a continuous energy spectrum.

If we, following [31], substitute the Green function
L̃aaσ(z) with ∆Σ(z) = Σ(z)−Σ0(z) = 0 into the equation
of reference [25] for the binding energy, we do not obtain
the exact second order term in the rebonding interaction
because in this case the second order contribution ∆Σ(2)

to the self-energy is omitted. It should be also noted that
the method of reference [31] involves the Anderson Hamil-
tonian with the energy dependent effective parameter εa,
which can not be considered as a regular procedure. Since
the expression for ∆Σ(2) is very complicated for the asym-
metric Anderson model, the simplest way of calculating
the chemisorption energy near the SM limit is the pertur-
bation expansion in the rebonding interaction used in the
present paper.

From equation (23) we can readily obtain the ex-
pression for the excess adatom charge ∆nr in RDA
defined as [30]

∆nr = ∂Er/∂εa = ∆na0 +∆nχ. (24)

Here∆nχ = ∂∆Er/∂εa. ∆nr is expressed through∆na0 =
∂∆E20/∂εa, χc0 = −∂∆na0/∆εa where the charge suscep-
tibility χc0 in the SM limit is given by equation (8) of [29].
In the second order in the rebonding interaction we have

∆n(2)
χ = ∂∆E(2)/∂εa = − i

π

∫
l

χ(z)∂Gbb(z)/∂εadz (25)

where the integration is performed over the line l: Rez =
εF. At the same time ∆n(2)

χ can be calculated using two
second order diagrams of Figure 1 of reference [21] for
the adatom Green function. On the other hand, from
equation (17)

∆nχ = − i
π

∫
l

χeff(z) ∂Gbb(z)/∂εadz (26)

where χeff(z) = χ(z)/[1 − χ(z)Gbb(z)]. Thus, from
equations (25) and (26) it follows that ∆nχ can be
also derived from the sum of the two infinite classes of
the diagrams for the adatom Green function which are
based on the second order diagrams of reference [21],
and correspond to the substitution of χeff(z) = χ(z) +
χ(z)Gbb(z)χ(z)+... for χ(z).

To evaluate the accuracy of RDA, we compare the val-
ues of Er and ∆nr with the exact ones obtained in the
limit of the almost filled substrate energy band [16] for
the parameters given by Newns [13] for the case of hydro-
gen chemisorbed on Ni but for εF = B/2: V = 3.75 eV,
U = 12.9 eV, εa = −8.04 eV, B = 3.8 eV. We have
the exact values Eexact = −3.435 eV, ∆nexact = 0.117
and Er = −3.455 eV, ∆nr = 0.120. In this case the di-
mensionless parameters d1− and d3− are equal to −1.857
and−1.562, respectively. The corresponding contributions
to ∆E are ∆E(2) = −0.367 eV, ∆E(4)

r = 0.021 eV,
∆E

(4)
nr = 0.028 eV so that the sum Er + ∆E

(4)
nr equals
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−3.427 eV and is close to Eexact. On the other hand,
in the Hartry-Fock approximation EHF = −2.772 eV,
∆nHF = 0.155 and the correlation energy equals 0.663 eV.

Equation (23) gives in an explicit form the analytical
continuation of Er(V ) (17) from the region V > 1 to the
region V > 1/3 for the asymmetric case, and has no dis-
continuities for |d3−| = εF and d1− = εF. However, when
V decreases and e.g. |d3−| approaches εF > 0, the compar-
ison with the exact results for εF = B/2 shows that the
error of RDA reaches 6%. When V further decreases and
|d3−| becomes smaller than εF, the agreement between E
and Er worsens abruptly.

On the contrary, when |d3−| decreases due to the
decrease of εa, RDA works well even for |d3−| < εF,
|d3−| → 0, and is exact in the weak-correlation regime
(εa + U < εF or εa > εF) up to the first order in
|εa|−1 for |εa| → ∞. In this case the condition |M1|,
M2 > 1 is conserved. If in the example considered above
we take εa = −20.9 eV, then Eexact = −10.155 eV,
∆nexact = 0.880 and Er = −10.196 eV, ∆nr = 0.881
for d3− = −0.708. In the weak-correlation regime for
εa + U < 0 or εa > 0, RDA is also exact up to the
second order in V . These properties of RDA in the weak-
correlation regime follow from the behavior of the effective
parameter γ(z) = Gab(z)χ(z)Gba(z) of the perturbation
expansion of the adatom Green function in the rebond-
ing interaction, which in the weak-correlation regime for
εa + U < 0 or εa > 0 is proportional to V 2 and ε−2

a for
V → 0 and |εa| → ∞, respectively. Thus, ∆nr is exact
up to the second order in |εa|−1 in the weak-correlation
regime and Er ∼

∫
∆nrdεa is therefore exact up to the

first order in |εa|−1. Thus, for parameters V and U imi-
tating hydrogen chemisorption on transition metals, RDA
gives smooth interpolation between the strong- correlation
and weak-correlation regimes and permits rather accurate
calculations to be performed in the intermediate-valence
regime when εa decreases from −U/2 to −∞. However,
in the weak-correlation regime the chemisorption energy
and the excess adatom charge can be calculated using the
Hartree-Fock approximation.

More generally, RDA is valid when |∆E(4)
nr | � |∆E(4)

r |.
From the comparison of the diagrammatic representations
of the adatom Green function [21] and the chemisorption
energy (Fig. 1) it follows that

∆E(4)
nr = − i

2π

∫
l

Gab(z)χ(z)Gba(z)∆Σ(2)(z)dz. (27)

We consider only the symmetric case which for U 6= 0
corresponds to the strong-correlation regime (εa < εF and
εa + U > εF). Then ∆Σ(2)(z) is given by equation (27)
of [21] and one obtains

∆E(4)
nr = −3x2V 2

2π2r2

∫ 0

−1

dω
∫ 0

−1

dε

f(t, y)ϕ(ω)ϕ(ε)
[(ε+ d−)(ε+ d+)(ω + d−)(ω + d+)]2[(ω + ε− r)2 − x2]

·

(28)

Here x = U/4, r = (x2 + 4V 2)1/2, t = ε − r, y = ω − r,
d− = d3− = d1−, d+ = d3+ = d1+, d± = −(r ± s),
s = (x2 +V 2)1/2, ϕ(ε) = −Imχ(ε+i0) = Im[πΛ(ε+i0)]−1

and

f(t, y) = t2y2(t2 + y2) + 2t3y3 − 2rty(t3 + y3)

−4rt2y2(t+y)+(x2+7V 2)(t4+y4)+2(x2+7V 2)ty(t2+y2)

+ 2(x2 + 9V 2)t2y2 + 4(x2 − V 2)rty(t + y)

− (3x2 + 19V 2)s2(t2 + y2)− 2(3x2 + 15V 2)s2ty

+ 2(x2 + 5V 2)s2r(t + y) + 4s4V 2. (29)

The calculation of ∆E(4)
r is straightforward. For the

semi-elliptic function ∆(ε) in the second order in U we
get

|∆E(4)
nr /∆E

(4)
r | = ξ(V )(U/4V )2 (30)

where the function ξ(V ) ≈ 0.5 for V < 1. Thus, in the
region V < 1, RDA is rather accurate for V > U/4. In
the case V ≥ 1, both ∆E

(4)
r and ∆E

(4)
nr are very small as

compared with ∆E20 and ∆E
(2)
r , even if U ∼ 4V as has

been shown above for hydrogen chemisorption on Ni for
the parameters given by Newns. In this case we may take
into account only the second order term in the rebonding
interaction ∆E

(2)
r . However, it is worthwhile using RDA

also in this case because equation (23) is more simple for
calculations and has a clear physical meaning.

The energy U of the Coulomb repulsion enters the ex-
pressions for the Greens functions and vertex functions
through the parameter x = U/4 (see e.g. Eq. (28)). Since
the parameter s = (x2 + V 2)1/2 as well as the parameter
r can be expanded in powers of (U/4V )2, we obtain from
our diagram method that the chemisorption energy can be
also expanded in powers of (U/4V )2 at least in the region
of V where the perturbation expansion in the rebonding
interaction converges. This region of V is evaluated by
equation (35) presented in Section 4. Thus, we have ob-
tained the effective parameter of the perturbation expan-
sion of the chemisorption energy in powers of U . The sim-
ilar parameter U/π∆ emerged in the infinite bandwidth
limit [17]. In many chemisorption problems on transition
metals U/4V < 1 at the equilibrium position, so that the
second order perturbation in U should yield a reasonable
approximation to the correlation energy which is in accor-
dance with the results of reference [10]. However, at larger
distances of adsorbate species from a metal the condition
U/4V < 1 is violated.

Consider e.g. the set of parameters suggested in
reference [32] and imitating hydrogen chemisorption on
W : B = 10 eV, U = 7.5 eV, εa = −U/2 and εF = 0. Using
the rather accurate method of reference [33], it has been
obtained in [32] that the hydrogen chemisorption energy
E = −3.2 eV for V = 3.44 eV, and E = −2.7 eV for V =
3.12 eV and the semi-elliptic density of states. The method
of [33] is based on the interpolation between the expres-
sion for the self-energy Σ(z) to second order in U [34] and
the limit of Σ(z) for V → 0. On the other hand, using
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δEnr = 2

�
−i

2π

�2X
σ,σ′

Z
l

dz

Z
l′

dz′
Z 1

0

dλ

λ
g(λ, z)Γ2;σσ′(z, z

′, z′)g(λ, z′)

=
1

4π2

X
σ,σ′

Z
l

dz

Z
l′

dz′
Gab(z)χ(z)Gba(z)Γ2;σσ′(z, z

′, z′)Gab(z
′)χ(z′)Gba(z′)

χ(z)Gbb(z)− χ(z′)Gbb(z′)

×
�

ln[1− χ(z)Gbb(z)]

χ(z)Gbb(z)
− ln[1− χ(z′)Gbb(z

′)]

χ(z′)Gbb(z′)]

�
(31)

our diagram method, we have Er = −3.243 eV, ∆E(2)
r =

−1.237 eV, ∆E(4)
r = 0.073 eV, ∆E(4)

nr = −0.011 eV,
E = Er + ∆E

(4)
nr = −3.25 eV for V = 3.44 eV and

Er = −2.708 eV, ∆E(2)
r = −1.332 eV, ∆E(4)

r = 0.108 eV,
∆E

(4)
nr = −0.016 eV, E = Er + ∆E

(4)
nr = −2.724 eV.

Thus, the sum E = Er + ∆E
(4)
nr gives the chemisorp-

tion energy with an accuracy up to 0.01 eV. Our results
for the chemisorption energy are in excellent agreement
with those of [32]. The relation between ∆E(4)

nr and ∆E(4)
r

agrees in the whole with that given by equation (30). At
the same time EHF = −2.953 eV, εc = EHF−E = 0.3 eV,
and EHF = −2.383 eV, εc = 0.34 eV, for V = 3.44 eV and
V = 3.12 eV, respectively. Other examples are presented
in Section 4.

4 The approximation for the calculation
of the contribution of the non-ring diagrams
to the chemisorption energy

In this section we obtain the approximate expression for
the contribution δEnr of the non-ring diagrams to the
chemisorption energy which is exact in the fourth order
in the rebonding interaction. Namely, we sum the infinite
class of the non-ring diagrams having only a single vertex
function Γ2. To eliminate the factor 1/n at the diagram of
the n-th order, we use the method of the coupling constant
λ [26]: the energy µp is multiplied by a constant λ (or the
function χ(z) is multiplied by λ2), the series is summed,
the result is divided by λ and integrated with respect to
λ from 0 to 1. We obtain that

see equation (31) above

where g(λ, z) = Gab(z)λ2χ(z)Gba(z)/[1 − λ2χ(z)Gbb(z)].
For the adatom Green function the analogous procedure
gives the self-energy which can be shown [20] to be propor-
tional to V 2 for small values of V . In the considered case
the sum Er + δEnr is not proportional to V 2 in the weak-
coupling region due to the additional integration with
respect to λ and z. Nevertheless, the correction δEnr to Er

permits us to calculate properly the chemisorption energy
up to rather small values of V because as discussed below
the sum E(v) = Er(V ) + δEnr(V ) interpolates approx-
imately between the strong-coupling and weak-coupling
limits.

We consider again only the symmetric case. For
this case χ(z) and Gbb(z) are the odd functions

Table 1. The chemisorption energies Er, E = Er + δEnr,
the exact chemisorption energies Eexact and the energies Ev of
reference [6] for the finite chain model of adsorption. U = 2.5,
εa = −U/2 and 2T = 1.

V −Er −E −Eexac −Ev

0.15 0.03795 0.04215 0.0412 0.04121
0.25 0.10670 0.11290 0.1119 0.11188
0.375 0.23582 0.24138 0.2410 0.24077
0.5 0.40023 0.40415 0.4041 0.40380
1.0 1.22582 1.22656 1.2266 1.22649
1.5 2.15129 2.15148 2.1515 2.15149

of z. It can be shown that for the symmetric case
Γ2;σσ′(z, z′, z′) = Γ2 even;σσ′(z, z′, z′) + Γ2 odd;σσ′(z, z′, z′).
Here Γ2 odd;σσ′(z, z′, z′) is the odd function of both z and
z′ and only this part of Γ2 gives the contribution to
δEnr (31). The vertex function Γ2odd;σσ′(z, z′, z′) deter-
mines also the self-energy ∆Σ(2)(z) and is given by

∑
σ,σ′

G2
ab(z)Γ2 odd;σσ′(z, z′, z′)G2

ab(z
′) =

− 24x2V 4z

[(z2 − d2
−)(z2 − d2

+)]2
[Ψ(z, ε)− Ψ(z,−ε)] (32)

where Ψ(z, ε) = R(z, ε)/[P (z, ε)(ε + d−)2(ε + d+)2]
and the functions R(z, ε) and P (z, ε) are defined by
equations (28-29) of [21].

To check the accuracy of our approximations, we cal-
culate the chemisorption energies Er and Er +δEnr for the
exactly solvable model of a one-level atom being joined to
the end of a chain consisting of three metal atoms [23].
In Table 1 we compare our results with the exact ones
presented in reference [14] and with the chemisorption en-
ergies Ev obtained using a variation Ansatz for the ground
state of the Anderson Hamiltonian [14]. The energies are
given in units of 2T where T is the hopping integral be-
tween nearest neighbors in the metal chain. From Table 1
it follows that for V ≥ 0.375 the rather accurate varia-
tion method of reference [14] and our diagram method for
δEnr yield the chemisorption energies with about the same
accuracy.

In Table 2 we also compare our results with the ex-
act ones for the same finite-chain model of adsorption and
with the chemisorption energies Ein obtained in [31] using
the interpolation method of reference [33]. The energies
are given in units of T . Table 2 shows that even for V = 1
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Table 2. The chemisorption energies Er, E = Er + δEnr,
the exact chemisorption energies Eexact and the energies Ein

of reference [31] obtained using the interpolation method of
reference [33] for the finite chain model of adsorption. U = 8,
εa = −U/2 and T = 1.

V −Er −E −Eexact −Ein

1 0.5662 0.5791 0.5785 0.5770
3 3.7573 3.7583 3.7583 3.7584
5 7.5394 7.5395 7.5395 7.5395

Fig. 2. The chemisorption energies Er in RDA (dotted line),

E = Er + δEnr (solid line) and Ewc = (∆Er)wc + (∆E
(4)
nr )wc

(dashed line) as functions of V . U = 2.5, εa = −U/2, B = 2.

the energy E reproduces the exact results with better ac-
curacy than the method of reference [33].

Figure 2 shows the chemisorption energies Er (dot-
ted line) and Er + δEnr (solid line) as functions of V
for the symmetric case for the hydrogen adsorption on
a metal having the semi-elliptic density of states ∆(ε)
suggested in [13]. The parameter U has been chosen to
be 2.5 [14], the bandwidth B = 2. The energy Er for the
cases |M1| = M2 < 1 (or V < 1/3) has been calculated us-
ing the analytical continuation of the function Er(V ) (23).
The original equation (17) can also be used. The dashed
line presents the chemisorption energy

Ewc(V ) = (∆Er)wc + (∆E(4)
nr )wc (33)

in the weak-coupling limit. As has been shown in [21], for
the calculations of the energies (∆Er)wc and (∆E(4)

nr )wc

it is sufficient to substitute in equations (17) and (27)
the function Γ (z) = πV 2Λ(z) instead of χ(z), the func-
tion Gaaσ(z) for V = 0 instead of Gbbσ(z) and Gbaσ(z),
and the self-energy ∆Σ

(2)
wc (z) given by equation (31) of

reference [21] instead of ∆Σ(2)(z).
When V decreases and tends to V∗ ≈ 0.3, the curve

E(V ) is almost tangential to the curve Ewc(V ) with the
accuracy of 0.001 (or 1.6% of E(V∗)) and interpolates
approximately between the strong-coupling and weak-
coupling limits. For V < 0.3 the curve E(V ) deviates from
Ewc(V ), and for small values of V behaves like V 2ln(V ).
For U = 1 the curves E(V ) and Ewc(V ) are approximately
tangents at V∗ = 0.2.

This interpolation property of the function E(V ) is
connected with the next important feature of the diagram
technique based on the perturbation expansion in the re-
bonding interaction [20]. Since Gab(z) ∼ V Gaa(z) (see
Eq. (9)), the contributions of the diagrams, which con-
tain the vertex function Γk with k > 2 or more than one
vertex functions Γ2, have additional factors (Gab)2 ∼ V 2

in comparison with the energy δEnr. Therefore, the total
contribution of these diagrams is small under the condi-
tion V > V∗(U).

More precisely, for the semi-elliptic density of states
∆(ε) the absolute value |γ(iω)|| of the effective interaction
parameter γ(z) = Gab(z)χ(z)Gba(z) on the imaginary axis
Re z = 0, Im z = ω ≥ 0 is given by

|γ(iω)| =
0.5V 2

[
(ω2 + 1)1/2 − ω

]
(ω2 + 9V 2)2

[ω4 + 2ω2(2x2 + 5V 2) + 9V 4]2
(34)

and is the decreasing function of ω for ω ≥ 0. For any U
and arbitrary symmetric function ∆(ε) from equation (16)
we have that

|γ(0)| = |χ(0)|/V 2 = 1/π∆(0)V 2. (35)

Therefore, for a given V and the density of states function
with a large value of ∆(0) the metal-adatom system is
close to the SM limit and |γ(0)| is small. For the semi-
elliptic ∆(ε) the absolute value |γ(0)| = 1/2V 2, so that
for V > 2−1/2 and all values of ω the function |γ(iω)| < 1.
For V = 0.5 |γ(0)| is equal to 2, but for small values of
V the function |γ(iω)| < 1 decreases abruptly because for
ω ∼ 1 we already have |γ(iω)| ∼ V 2. Thus, it can be
supposed that for V ∼ 0.5 the small neighborhood of the
point ω = 0 does not give yet the appreciable contribution
to the integrals entering the expressions for the diagrams
which contain the vertex function Γk with k > 2 or more
than one vertex function Γ2.

The appearance of the function V∗(U) is caused by the
presence of the energy d− in the denominators of Gij(z)
and Γ2. When V decreases, the energy d− decreases too
and for values of V smaller than some V∗(U) begins to
play the main role during the integration in equation (31).
As a result, the curve E(V ) deviates from Ewc(V ) for
V < V∗(U). For U < 8 the energy d− has the order of V
for V ∼ 1. For small values of V we have d− ≈ −6V 2/U
and therefore V∗(U) ∼ U1/2. In the limit U → 0 both
V∗(U) and δEnr tend to zero, and E(V ) goes to the ex-
act chemisorption energy for the case of non-interacting
electrons.

We present also the set of characteristic energies for
V = 0.5, U = 2.5 and semi-elliptic density of states: Er =
−0.228, E = −0.240, ∆E(2)

r = −0.343, ∆E(4)
r = 0.040,

∆E
(4)
nr = −0.018, δEnr = −0.012. Figure 1 and Table 1

show that for V > 0.5, RDA works rather well.

5 Hydrogen chemisorption energies
on transition metals

As an application of our diagram technique, we calcu-
late hydrogen chemisoprion energies on polycrystalline
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transition metal surfaces and explain their trends along
the transition metal series using the surface molecule point
of view. This explanation is rather simple since the en-
ergies ∆E20, Eb and ∆Er entering expression (6) for the
chemisorption energy are simple functions of the electronic
properties of transition metals. The properties under con-
sideration are the width B of the d band, the position of
the Fermi level εF with respect to the d band center and
the work function A. The value of the work function en-
ters the problem in the implicit form through the value of
εa which is given by the expression [1]

εa = −13.6 eV +Wim + εF +A (36)

where Wim is the image potential and εa is measured from
the d band center.

We take into account only d bands of transition met-
als because recent calculations of adsorption systems have
shown that, e.g. for Pd covalent bonds result mainly from
the hybridization of H 1s and Pd 4d states [2]. Ni 3d
states also give a strong admixture to the bonding [35,36].
The metal parameters were taken to be the same as in
reference [11].

We calculate the hydrogen chemisorption energies for
hydrogen equilibrium positions. Therefore, we do not con-
sider the repulsion energy [10] which is necessary to find
an equilibrium position but is omitted in the Anderson-
Newns model. From the inhomogeneous electron gas
theory [37] it can be concluded that the energies V , U
and Wim being considered as the ground state properties
of the H/Me system are functionals of the electronic den-
sity. Further on, using the ideas of the effective medium
theory [11], we may also consider V , U and Wim as func-
tions of the average electron density n0 at the equilibrium
position. Since this density is the same for all transition
metals [11], we assume below that the energies U and Wim

are also the same for all transition metals and equal to
4 eV and 5.5 eV, respectively. These values are often used
to imitate hydrogen chemisorption on transition metals
within the Anderson-Newns model [38,39].

The hopping parameter V is taken to be the same
along a transition metal series with a given number.
However, it is considered as a function of a number of
series and is chosen to reproduce within RDA the exper-
imental hydrogen chemisorption energy Eexp for one of
the metals from a given series. The semi-elliptic density
of states is used in our calculations because it approxi-
mates rather well the surface density of states of transi-
tion metals having both fcc structure and bcc structure in
the case when the latter have the surface states (see e.g.
the results of calculations of local densities of states for
Mo and W presented in Ref. [40]). Using the experimen-
tal hydrogen chemisorption energies [41] for H/Ni(111)
(Eexp = −2.7 eV), H/Mo(110) (Eexp = −2.97 eV) and
H/W(100) (Eexp = −2.94 eV), one finds that V3d =
2.382 eV, V4d = 2.712 eV and V5d = 2.846 eV for 3d,
4d and 5d transition metals, respectively. The obtained
hierarchy of values of V reflects that of the decay lengths
of the corresponding d wave-functions.

In Table 3 we present the results of calculations of
hydrogen chemisorption energies for the 5d transition

Table 3. Hydrogen chemisorption energies Er, E = Er+∆E
(4)
nr

and Eexp for 5d transition metals. The experimental chemisorp-
tion energies Eexp are taken from references [11,41]. The band
parameters are the same as in reference [11]. B is the width of
the d band, the energies εF and εa are measured from the d
band center, the correlation energy εc = EHF − E. The other
energies are defined in the paper. All the energies are given in
eV. U = 4 eV, V = 2.846 eV.

Metal Hf Ta W Re Os Ir Pt

B 10.2 11.6 11.7 11.4 10.7 9.2 7.3
εF −2.67 −2.36 −0.42 0.57 1.68 2.72 2.90
εa −6.87 −5.96 −4.02 −2.83 −0.52 0.12 0.44

−∆E20 6.162 5.708 5.026 4.820 4.912 5.051 5.138
Eb 3.702 4.002 3.734 3.646 3.574 3.457 3.130
−∆Er 0.859 1.258 1.648 1.710 1.428 1.173 0.754

−∆E(2) 0.825 1.260 1.742 1.838 1.518 1.245 0.787

∆E(4) −0.027 0.016 0.093 0.165 0.162 0.255 0.140

−∆E(4)
nr 0.014 0.025 −0.007 0.023 0.063 0.177 0.102

−Er 3.32 2.96 2.94 2.88 2.77 2.77 2.76
−E 3.31 2.94 2.95 2.86 2.71 2.6 2.66
−Eexp 2.94 2.9 2.52 2.6

2.73
εc 0.05 0.06 0.1 0.1 0.1 0.04 0.06

metal series. Similar results were also obtained for 3d
and 4d series. The energies ∆E20 and Eb are calculated
exactly using equation (14) and equation (A.8) of the
Appendix. The energy ∆E of the interaction of SM with
the remaining metal is calculated in RDA. The hydro-
gen chemisorption energy E includes also the correction
∆E

(4)
nr to Er where Er is calculated using equation (23).

From Table 3 it follows that for constant V , U and Wim

the absolute values of the chemisorption energies Er and E
decrease in the whole with the increase of the serial num-
ber of a metal. A local minimum of |E| is obtained for
iridium. The same tendency is also observed in experi-
ment. Since |E(4)| � |∆E(2)|, the perturbation expan-
sion in the rebonding interaction yields rather accurate
results. The accuracy of calculations may be estimated as
0.1 |∆E(4)| ∼ 0.01 eV. Since U/4V ≈ 0.35, the corre-
lation energies εc are small at the equilibrium positions.
These energies are the largest at the middle of the series
near the symmetric case εa = −U/2, as it should be for
U < 6.7V [29].

Similar results for the chemisorption energy have
been previously obtained in references [7,11] using other
methods of calculation. These results are in accordance
with the general experimental observation that hydrogen
chemisorption energy decreases along the transition metal
series [42].

Now we explain the trends in hydrogen chemisorp-
tion energy along the transition metal series in terms
of the energies ∆E20, Eb and ∆E. The binding energy
of the doubly-occupied SM ∆E20 is an even function of
t = εa + U/2 (see Eq. (14)) and takes its smallest abso-
lute value at t = 0. The energy ∆E20 as a function of t
is shown in Figure 3 for three values of V . The general
behavior of ∆E20(t) is the same as for U = 0 (in this case
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Fig. 3. The binding energy of the doubly occupied surface
molecule ∆E20 as a function of t = εa + U/2 for U = 4 and
different values of V : V = 0.4 (dotted line), V = 1 (solid line)
and V = 2 (dashed line).

∆E20(t) = −(t2 + 4V 2)1/2) and has a simple physical
meaning. It is energetically favorable for both electrons
to occupy the state |a〉 for t < 0 and, on the contrary, it
is energetically favorable for both electrons to occupy the
state |b〉 for t > 0. The value of εa is given by equation (36)
where only the Fermi energy εF and the work function
A depend on the nature of the metal. The Fermi energy
increases along the transition metal series due to the d
band filling. The work function A also increases with the
increase of the serial number of a transition metal in a
given series what is connected with the rise of the first
ionization energy of a free metal atom due to the increase
of its nuclear charge [43]. Thus, the values of A are small
and the values of εF are negative at the beginning of the
series. It results in a large negative εa (see Tab. 3) and,
therefore, in large absolute values of ∆E20. Just this effect
explains the relatively large absolute values of hydrogen
chemisorption energies at the beginning of the series.

The dimensionless energy Eb as a function of εF is
shown in Figure 4 by a solid line for the semi-elliptic den-
sity of states (the discussion of Fig. 4 in detail is presented
in the Appendix). It is an even function of εF and has a
minimum at εF = 0. The width B of the d band reaches its
maximum value near the middle of the series (Mo, W) (see
Tab. 3) which is similar to the behavior of a metal binding
energy and is connected with the filling of the metal bond-
ing states. As a result, the effect of B on Eb is dominant
and the energy Eb given in eV takes the maximum value
for Ta.

The energy Eb decreases at the end of the series. On
the contrary, the energy |∆E20| increases slightly so that
the sum |∆E20 + Eb| increases at the end of the series
too. However, this increase is compensated by the decrease
of the absolute value of |∆Er| at the end of the series.
Since the SM limit takes place for B = 0, the absolute
value of the interaction energy of SM with the remaining
metal |∆Er| reaches its maximum near the center of the
series for metals having the large width of the d band (see
Tab. 3). As a result, the energy |Er| decreases in the whole

Fig. 4. The energy Eb of the separation of the singly occupied
state |b〉 from a metal as a function of εF for three densities of
states ∆(ε): ∆(ε) = (2/π)(1− ε2)1/2 (the semi-elliptic density
of states, solid line), ∆(ε) = (8/3π)(1−ε2)3/2 (dashed line) and
the double-triangle density of states (Eq. (A.7), dotted line).
Eb and εF are measured in units of B/2.

along the transition metal series and is almost constant at
the end of the series due to the compensation discussed
above. However, the correction ∆E(4)

nr increases at the end
of the series due to the d band filling so that the hydro-
gen chemisorption energy |E| is minimal for the metals of
the platinum group. It should be noted that the energies
∆E20, Eb and ∆Er do not change monotonously with the
d band filling. However, the energies |Er| and |E| decrease
in the whole along the transition metal series.

At the end of this section we compare our explana-
tion of trends in hydrogen chemisorption energy with the
others in literature. As is concluded in reference [44], the
decrease of the binding energy of a number of species with
transition metals is due to the progressive filling of the an-
tibonding levels of SM formed in the strong coupling limit
of adsorption. However, our study shows that the SM en-
ergy levels are not “frozen” with the d band filling. On
the contrary, the energy |∆E20| increases at the end of
the series, and the overall trends in hydrogen chemisorp-
tion energy is a result of the concerted behavior of the
energies ∆E20, Eb and ∆E.

In the effective medium theory [11] the starting point
is the hydrogen atom in a homogeneous electron gas
which includes the metal d electrons. Therefore, the en-
ergy ∆Ehom [11] which is the same for all transition met-
als includes also the contribution of d electrons. In the
homogeneous electron gas the hydrogen 1s level is always
shifted down to just below the bottom of the band and is
doubly occupied. In this case the energy ∆Ehyb describ-
ing additional hybridization of the adatom electrons with
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the metal d electrons is rather small and accounts for the
weak variation of hydrogen chemisorption energy with the
band filling.

On the contrary, in our approach: (1) the bare hydro-
gen 1s level is singly occupied; (2) the energies ∆E20 and
∆E include hybridization of the adatom electron with the
metal d electrons; (3) all the energies ∆E20, Eb and ∆E
change with the d band filling. Therefore, our approach
takes into account the d band structure effects from the
very beginning and can be considered as complementary
to the method of reference [11].

6 Conclusion

Using the perturbation expansion in the rebonding inter-
action near the surface molecule limit, the new diagram
technique for the calculation of the chemisorption energy
in the Anderson model is proposed. The new expression
for the chemisorption energy in RDA is presented. RDA
is exact in the limits when B = 0 or U = 0. It gives also
the exact second-order contribution of the rebonding in-
teraction and is exact up to the first order in |εa|−1 for
|εa| → ∞. It should be noted that for the perturbation
expansion in the hybridization the approximation anal-
ogous to RDA is of no importance because in this case
|(∆E(4)

r )wc| is always smaller than |(∆E(4)
nr )wc|. In par-

ticular, it can be shown that (∆E(4)
nr )wc ≈ −4V 4/U for

V → 0 so that the allowable values of V should satisfy the
condition V 4 � U .

The expression for the contribution of the non-ring di-
agram of the fourth order in the rebonding interaction
and the approximate expression for the contribution of
the higher-order non-ring diagrams are obtained. It is
shown that our diagram method yields rather accurate
chemisorption energies at least for such values of V , U
which imitate hydrogen chemisorption on transition met-
als. In particular, RDA is more simple and convenient in
the asymmetric case in comparison with other methods
(see e.g. the method of Ref. [33]).

Finally, the diagram technique suggested in the
present paper provides the foundation of the simple and
transparent physical picture of hydrogen chemisorption
on transition metals. It consists in the formation of SM
and its subsequent interaction with the remaining metal.
Based on this picture, a simple explanation of observable
trends in hydrogen chemisorption energy is given.

Appendix

In this Appendix we study the dependence of the energy
Eb(εF), which has a physical meaning of the energy of
the separation of the singly-occupied state |b〉 from the
metal, on the form of the density of states ∆(ε). This
study is of interest since, in general, various functions ∆(ε)
correspond to different group orbitals |b〉 in the case of
chemisorption of a one-level atom on different crystal faces
of transition metals at different positions [45]. For the sake
of simplicity we consider below only even functions ∆(ε)

i.e. the density of states which are symmetric with respect
to the d band center. In this case the energy Eb(εF) is an
even function of εF.

It can be shown from equation (22) that the energy
Eb(εF) obeys the next inequalities:

|εF| ≤ Eb(εF) ≤ 2− |εF|. (A.1)

To study the general properties of Eb(εF), it is worth-
while considering a family of density of states functions
∆a,c(ε, η) which tend to the family of functions

∆a,c(ε) = (2 + c)−1[δ(ε− a) + cδ(ε) + δ(ε+ a)] (A.2)

when the widths of their peaks, which are proportional
to η, tend to zero. Here 0 ≤ a ≤ 1, c ≥ 0. Then from
equation (22) we get that the energy Eb(εF) for ∆(ε) =
∆a,c(ε, η) tends to Eb∗(εF) when η → 0

Eb∗(εF) =

Eb∗(0) + εF, εF ≤ βa
2a− εF βa ≤ εF ≤ a
εF, εF ≥ a

(A.3)

where Eb∗(0) = 2(1−β)a, β = c1/2(2+c)−1/2 and εF ≥ 0.
When a = 0, we have ∆0,c(ε) = δ(ε) and the energy

Eb∗(εF) is equal to the lower boundary |εF| of energies
Eb(εF) (see Eq (A.1)). On the contrary, ∆a,c(ε) = [δ(ε−
1) + δ(ε+ 1)]/2 for a = 1, c = 0 and the energy Eb∗(εF) is
equal to the upper boundary 2− |εF| of energies Eb(εF).

A family of functions (A.2) can be considered as a
limiting case of a number of density of states functions
which are often used to imitate hydrogen chemisorption
on transition metals. Therefore, one can approximately
obtain from equation (A.3) a form of corresponding curves
Eb(εF). To illustrate the dependence of Eb(εF) on the form
of∆(ε), we use below the semi-elliptic density of states [13]

∆(ε) =
2
π

(1− ε2)1/2θ(1− |ε|) (A.4)

where θ(x) is a step function, the density of states of
reference [7]

∆(ε) =
8

3π
(1− ε2)3/2θ(1− |ε|), Λ(ε) =

8
3π
ρ(ε),

(A.5)

where

ρ(ε) =


3
2ε− ε3, |ε| ≤ 1
3
2ε− ε3 − (ε2 − 1)3/2, ε ≤ 1
3
2ε− ε3 + (ε2 − 1)3/2, ε ≥ 1

(A.6)

and the density of states which has a form of two isosce-
les triangles and is a symmetric variant of that used in
reference [38]:

∆(ε) = θ(1− |ε|)
{

1− |2ε− 1|, 0 ≤ ε ≤ 1
1 + |2ε+ 1|, −1 ≤ ε ≤ 0. (A.7)
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From equation (22) one gets that for the semi-elliptic den-
sity of states

Eb(εF) = εF[1− (2/π)arccos(εF)] + (2/π)(1− ε2
F)1/2

(A.8)

where arccos is taken from 0 to π and Eb(0) = 2/π and

Eb(εF) = −εF

{
1 +

2
π

arctg
[
∆(εF)
Λ(εF)

]}
+

4
π

(1− ε2
F)1/2 − 4

π31/2
arctg[31/2(1− ε2

F)1/2] (A.9)

for the density of states (A.5) where the first arctg in the
right-hand side is taken from −π to 0, the second one from
−π/2 to π/2 and Eb(0) = 4(π−1 − 3−3/2).

In Figure 4 presented in Section 5, we showed the en-
ergy Eb as a function of εF for the densities of states given
by equations (A.4-A.5) and (A.7). The density of states
(A.4-A.5) tend to δ(ε) when the bandwidth B → 0. Since
the function ∆(ε) (A.5) has a more pronounced maximum
at the point ε = 0 as compared to the semi-elliptic den-
sity of sates, the separation of the singly-occupied state |b〉
requires more energy for the semi-elliptic ∆(ε). The den-
sity of states (A.7) tends to the function ∆1/2,0(ε) given
by equation (A.2) when the basis of the triangles tend to
zero. The separation of two localized levels with εb = ±1/2
is more energetically favorable in this case. The same also
takes place for the double-triangle function (A.7). There-
fore, the energy Eb(0) for this case is substantially larger
than for the densities of states (A.4-A.5) as shown in
Figure 4.

It can be also shown that for arbitrary density of states

(dEb(εF)/dεF)εF=±1 = ±1. (A.10)

However, the behavior of the energy Eb(εF) for |εF| > 0.5
depends on the rate of the tendency of the corresponding
density of states function to zero at the top of the d band,
so that the larger rate causes the smaller values of Eb(εF).
Therefore, the curveEb(εF) for the double-triangle density
of states occupies the intermediate position between the
other curves in the domain |εF| > 0.5.
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